Input: Features (X) + Labels (y)
Output: Predictions + Feature Importance
n_estimators: 100-500
max_depth: 10-20
min_samples_split: 2-10
Input: Features (X) + Labels (y)
Output: Predictions + Learned Representations
layers: [input, hidden, output]
activation: relu/sigmoid/tanh
learning_rate: 0.001-0.1
Input: Features (X) + Labels (y)
Output: Predictions + Support Vectors
kernel: linear/rbf/poly
C: 0.1-100
gamma: 0.001-1.0
Input: Parameter space + Objective function
Output: Optimized parameters + Best score
n_trials: 100-1000
direction: minimize/maximize
sampler: tpe/grid/random