Machine Learning

Random Forest

Input → Output

Input: Features (X) + Labels (y)
Output: Predictions + Feature Importance

Core Process

  • Build multiple decision trees
  • Each tree votes on prediction
  • Majority vote = final prediction
  • Average feature importance across trees

Key Parameters

n_estimators: 100-500
max_depth: 10-20
min_samples_split: 2-10

Neural Networks

Input → Output

Input: Features (X) + Labels (y)
Output: Predictions + Learned Representations

Core Process

  • Forward pass through layers
  • Compute loss function
  • Backpropagate gradients
  • Update weights

Key Parameters

layers: [input, hidden, output]
activation: relu/sigmoid/tanh
learning_rate: 0.001-0.1

Support Vector Machine

Input → Output

Input: Features (X) + Labels (y)
Output: Predictions + Support Vectors

Core Process

  • Find optimal hyperplane
  • Maximize margin between classes
  • Use support vectors for boundary
  • Apply kernel transformation

Key Parameters

kernel: linear/rbf/poly
C: 0.1-100
gamma: 0.001-1.0

Optuna

Input → Output

Input: Parameter space + Objective function
Output: Optimized parameters + Best score

Core Process

  • Define parameter search space
  • Create objective function
  • Run optimization trials
  • Return best parameters

Key Parameters

n_trials: 100-1000
direction: minimize/maximize
sampler: tpe/grid/random